
Lesson 1 THERMODYNAMICS OF SURFACES 

 

1. Review of thermodynamics 

 

a) Principles 

 First principle (only reversible processes will be considered.): WUQ     

( symbols meaning non-exact differentials, meaning the function has a value that 

depends on the integration path ), Q = heat, W = mechanical or other work (electrical, 

magnetic, elastic, etc.). 

 Second principle: 
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 Together they lead to the fundamental relation:  WVpUST     (1) 

 

The additivity principle (= if the system doubles its size, or its extensive parameters 

double, the energy doubles also), implies that the energy U(N,V,S) is an homogeneous 

function of the first order:   

U(N, V, S) = U(N,V,S) 

This leads to the Euler equation, obtained by differentiating this expression with respect 

to , then making  = 1, integrating and using the third principle S(T=0) = 0: 

U = N - pV + TS (Euler eq.) 

 

The intensive parameters are the partial derivatives of U: 

Chemical potential:  = U/N 

Pressure: p = - U/V 

Temperature T = U/S 

which are the conjugate variables of N, V and S, the normal variables of the energy, as a 

thermodynamic potential. 

The differential of Euler eq. together with the fundamental eq. (1), leads to the 

Gibbs-Duheim equation:    SdT –Vdp +Nd = 0  (2) 



b) Thermodynamic potentials 

The thermodynamic potentials are important functions of the extensive (S, V, N) 

and intensive (, p, T) that describe the state of the system.  Thermodynamic equilibrium, 

i.e., when the system stops evolving after a perturbation, corresponds to a minimum of 

the potential. For example for the energy U(x):  U/x = 0 and 
2
U/x

2
 >0  

 

In differential and integral form (repeated indices meaning summation over all 

types of particles) the commonly used potentials are: 

 

Energy U(S,V,Nj):  dU = TdS – pdV + jdNj ;  U = TS – pV + jNj 

Helmholtz free energy F(T,V, Nj): dF = -SdT – pdV + jdNj;  F = U –TS = jNj - pV 

Gibbs free energy G(T, p, Nj): dG = - SdT + Vdp + jdNj ;  G = U –TS + pV = jNj 

Omega potential (T, V, j): d = -SdT – pdV -Njdj;   = F –G =  -pV  

 

When should we use one potential or another?  Any potential can be used to 

define equilibrium. However it is best to use the potential whose natural variables remain 

constant. For example, (T, V, j) is to be used in open systems (with V and T constant), 

where Nj varies but where j stays constant. 

 



Surface tension 

  

Surface tension, denoted by , is defined as the energy to create a unit of surface.  

 

The energy of a surface arises from the broken bonds of the surface 

atoms, and /or from the missing attraction forces from the atoms or 

molecules outside the solid.  To break a piece of matter and create a 

surface cost the energy of the bonds being broken.  The surface tension has units of 

energy/area or force/length.  It can be viewed as a force acting per unit length on any line 

dividing the surface.  

 

 

Droplets and bubbles: 

 

Lets consider two phases 1 and 2, separated by a surface of area 

A, in equilibrium. Since  and T are constant we use the Omega 

potential (we could use also the Helmholtz potential F): 

 = -p1V1 –p2V2 + A 

 

Since V1 + V2 = constant, d = -(p1 –p2)dV1 + dA  = 0, in equilibrium.  

For a planar surface this means p1 = p2, since dA = 0.  For a spherical droplet or bubble, 

V1 = 4/3r
3
, and A = 4r

2
, we obtain:     p1 –p2 = 2/r (3) 

For bubbles r < 0, and for a liquid filament (like that on the figure on the left),  

r1 > 0, and r2 <0, therefore 

p1 –p2 = /r1 - /r2  (4) 
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For a soap bubble of similar shape and with open top and bottom ends p1 = p2 = 1 

atmosphere, so that r1 = r2  

 

Exercise 1: Calculate the pressure due to capillary condensation at the apex of a sphere 

(or for example an AFM tip):  

 

Answer: ? 

 

 

 

 

 

Exercise 2: Find the geometrical relation between , force acting per unit length, and the 

increase in pressure in the concave side of a curved interface. 

 

Answer:  

We can explain p as the result of the pull from  (= force per unit length, left figure) 

perpendicular to any line segment on the surface.  For a “cut” perpendicular to a 

principal radius of curvature r, this produces a force towards the center f ~ .L. = . 

L.s/r.   The increase in pressure is f/(s.L) =  /r.  The same reasoning for the pull on a 

line segment along the other principal curvature of radius r’ will add another term /r’. 
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Equilibrium gas pressure 

The pressures p1 and p2 near a curved surface are therefore different from the 

pressure of the gas over a flat surface, which defines the equilibrium vapor pressure p0.  

Let’s calculate the difference between p1 and p2 and p0. 

We start with the equilibrium condition of equal chemical potentials: 

For the drop and the surrounding gas phase: 1(p1,T) = 2(p2,T),  (5) 

For a flat surface and the gas phase:    1(p0,T) = 2(p0,T) , (6) 

 

Combining we get:      1(p1,T) - 1(p0,T) = 2(p2,T) - 2(p0,T)  

For small differences in pressure, by series expansion, and using the equality:  v = -

/p, (v = volume per molecule) we get: 

v1p1 = v2p2, 

where pj  pj –p0.  Since from (3) we know that p1 - p2 = 2/r, substituting gives:   
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Since the volume per gas phase molecule is around 3 orders of magnitude larger (at 1 

atm) than that of a liquid phase molecule, i.e. v2 >> v1,: 
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Using the perfect gas equation: pV = NkT, we have v2 = kT/p2 ~ kT/p0, so:  

kTr
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This expression gives the increase in vapor pressure over a spherical droplet relative to 

that near a flat surface.  Therefore, if there is a 

collection of droplets there can be no equilibrium. The 

big drops will grow at the expense of the small ones, 

since these would require higher vapor pressure 

around them. This is called Ostwald ripening.  

 

 
 

 

 

  



For very small droplets, we cannot use the approximation v1p1 = v2p2, since p2 

can become quite large. We then need to use the unexpanded form of (p,T) = (po,T) + 

kTlog(p/p0) for the gas phase.  With this we get the Kelvin equation: 
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Exercise 3: Find pvapor for water ( = 73 mJ/m
2
) for droplets of radius 1000, 100, 10 Å. 

Answer:  For 100 Å the increase is 10%, and if r = 10 Å, it increases by a factor 2.7!  

That is why condensation will not occur even if equilibrium dictates it should 

(supercooling).  This is the problem of nucleation. 

 

Nucleation 

Let’s consider now the energy cost of nucleating a drop (or bubble) out of 

equilibrium, (1  2). Upon condensation the free energy will increase by the amount: 

F = A + (1 - 2)N = 4r
2
 + (1 - 2)4/3r

3
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Where N is the number of molecules condensed from the gas to the liquid.  

If 1 > 2, no condensation can occur because F increases always.  However, if the 

vapor is supersaturated, then 1 < 2, and the cubic term is negative and F goes through 

a maximum, corresponding to a droplet of a certain radius rc.  This can be found by 

differentiating giving:   

rc = 2vliq/(2 - 1),  

which is, as expected, the value given by the Kelvin equation.  The barrier for nucleation 

is:  Fmax = 4/3.r
2
 

A density fluctuation can generate a nucleus of radius larger than rc to nucleate a drop. 

 

Lets calculate  1 - 2 over a droplet in a supersaturated vapor pressure p2 > po (po = 

saturation vapor pressure).   We use:  2(p2,T) = 2(po,T) + kTln(p2/po), and we assume 

that 1(p1,T) for the droplet phase is equal to that of the flat bulk liquid 1(po,T),  the 

difference being negligible. Since over the flat bulk (far away from the droplet-vapor 

area) 1(p0,T) = 2(p0,T), we have: 



2(p2,T) - 1(p1,T) =  kTln(p2/po) 

So that: 

F = A + (1 - 2)N = 4r
2
 + (1 - 2)4/3r

3
/vliq = 4r

2
 - kTln(p2/po)4/3r

3
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The graph above shows F as a function of drop radius for various values of the 

supersaturation vapor pressure S = p2/po for water.  As we can see, the maximum  

decreases and shifts to lower radius with S.  

 

 

 


